Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.461
Filtrar
1.
BMC Cancer ; 24(1): 478, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622651

RESUMO

BACKGROUND: Pancreatic cancer is the foremost contributor to cancer-related deaths globally, and its prevalence continues to rise annually. Nevertheless, the underlying mechanisms behind its development remain unclear and necessitate comprehensive investigation. METHODS: In this study, a total of 29 fresh stool samples were collected from patients diagnosed with pancreatic cancer. The gut microbial data of healthy controls were obtained from the SRA database (SRA data number: SRP150089). Additionally, 28 serum samples and diseased tissues were collected from 14 patients with confirmed pancreatic cancer and 14 patients with chronic pancreatitis. Informed consent was obtained from both groups of patients. Microbial sequencing was performed using 16s rRNA. RESULTS: The results showed that compared with healthy controls, the species abundance index of intestinal flora in patients with pancreatic cancer was increased (P < 0.05), and the number of beneficial bacteria at the genus level was reduced (P < 0.05). Compared with patients with chronic pancreatitis, the expression levels of CA242 and CA199 in the serum of patients with pancreatic cancer were increased (P < 0.05). The bacterial richness index of tumor microorganisms in patients with pancreatic cancer increased, while the diversity index decreased(P < 0.05). Furthermore, there was a change in the species composition at the genus level. Additionally, the expression level of CA242 was found to be significantly positively correlated with the relative abundance of Acinetobacter(P < 0.05). CONCLUSION: Over all, the expression levels of serum tumor markers CA242 and CA19-9 in patients with pancreatic cancer are increased, while the beneficial bacteria in the intestine and tumor microenvironment are reduced and pathogenic bacteria are increased. Acinetobacter is a specific bacterial genus highly expressed in pancreatic cancer tissue.


Assuntos
Microbiota , Neoplasias Pancreáticas , Pancreatite Crônica , Humanos , Antígenos Glicosídicos Associados a Tumores , RNA Ribossômico 16S/genética , Neoplasias Pancreáticas/diagnóstico , Bactérias/genética , Pancreatite Crônica/genética , Microambiente Tumoral
2.
Front Oncol ; 14: 1382701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628669

RESUMO

Breast cancer, as one of the most common malignancies in women, exhibits complex and heterogeneous pathological characteristics across different subtypes. Triple-negative breast cancer (TNBC) and HER2-positive breast cancer are two common and highly invasive subtypes within breast cancer. The stability of the breast microbiota is closely intertwined with the immune environment, and immunotherapy is a common approach for treating breast cancer.Tertiary lymphoid structures (TLSs), recently discovered immune cell aggregates surrounding breast cancer, resemble secondary lymphoid organs (SLOs) and are associated with the prognosis and survival of some breast cancer patients, offering new avenues for immunotherapy. Machine learning, as a form of artificial intelligence, has increasingly been used for detecting biomarkers and constructing tumor prognosis models. This article systematically reviews the latest research progress on TLSs in breast cancer and the application of machine learning in the detection of TLSs and the study of breast cancer prognosis. The insights provided contribute valuable perspectives for further exploring the biological differences among different subtypes of breast cancer and formulating personalized treatment strategies.

3.
Sci Total Environ ; : 172400, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631634

RESUMO

Ensuring agricultural security and preserving the health of wetland ecosystems are crucial concerns facing northeast China. However, the adverse effects of environmental pollution, especially nitrogen (N), caused by prolonged agricultural development on the health of marsh wetlands cannot be systematically recognized. To address this issue, an 18-year trial with four different levels of N application was carried out in a typical area of the Northeast region: 0, 6, 12, and 24 gN·m-2·a-1 (referred to as CK, N6, N12, and N24, respectively) to investigate changes in wetland ecological functioning. The results showed that long-term N input significantly enhanced soil N availability. High-level of N addition (N24) significantly reduced soil bacterial richness in October, while fungal diversity was significantly higher in June than in October for both control and N6 treatments. The main environmental factors affecting microorganisms in June were TN, NH4+, and EC, while bacterial and fungal communities were influenced by TN and Leaf Area Index (LAI), respectively, in October. It was found that the AN16S gene was significantly higher in June than in October, indicating that summer is the critical time for N removal in the wetland. N addition significantly reduced the abundance of the NIFH gene and decreased the N fixation potential of the wetland. In June, low and medium levels of N inputs promoted denitrification processes in the wetland and elevated the wetland N2O emission potential. The abundance of NARG, NIRK, and NOSZ genes decreased significantly in October compared to June, indicating a decrease in the wetland N2O emission potential. Additionally, it was observed that soil methanotrophs were positively affected by NH4+ and TN in October, thereby reducing the wetland CH4 emission potential. Our research provides a systematic understanding of the impact of agricultural N pollution on marsh wetlands, which can inform strategies to protect wetland health.

4.
Nutrients ; 16(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38613071

RESUMO

Obesity and depression are interdependent pathological disorders with strong inflammatory effects commonly found worldwide. They determine the health status of the population and cause key problems in terms of morbidity and mortality. The role of gut microbiota and its composition in the treatment of obesity and psychological factors is increasingly emphasized. Published research suggests that prebiotic, probiotic, or symbiotic preparations can effectively intervene in obesity treatment and mood-dysregulation alleviation. Thus, this literature review aims to highlight the role of intestinal microbiota in treating depression and obesity. An additional purpose is to indicate probiotics, including psychobiotics and prebiotics, potentially beneficial in supporting the treatment of these two diseases.


Assuntos
Microbioma Gastrointestinal , Humanos , Depressão/terapia , Estado Nutricional , Exercício Físico , Obesidade/terapia , Prebióticos
5.
J Environ Manage ; 358: 120743, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626484

RESUMO

Coastal saline soil is an important reserve resource for arable land globally. Data from 10 years of continuous stubble return and subsoiling experiments have revealed that these two conservation tillage measures significantly improve cotton rhizosphere soil organic carbon sequestration in coastal saline soil. However, the contribution of microbial fixation of atmospheric carbon dioxide (CO2) has remained unclear. Here, metagenomics and metabolomics analyses were used to deeply explore the microbial CO2 fixation process in rhizosphere soil of coastal saline cotton fields under long-term stubble return and subsoiling. Metagenomics analysis showed that stubble return and subsoiling mainly optimized CO2 fixing microorganism (CFM) communities by increasing the abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi, and improving composition diversity. Conjoint metagenomics and metabolomics analyses investigated the effects of stubble return and subsoiling on the reverse tricarboxylic acid (rTCA) cycle. The conversion of citrate to oxaloacetate was inhibited in the citrate cleavage reaction of the rTCA cycle. More citrate was converted to acetyl-CoA, which enhanced the subsequent CO2 fixation process of acetyl-CoA conversion to pyruvate. In the rTCA cycle reductive carboxylation reaction from 2-oxoglutarate to isocitrate, synthesis of the oxalosuccinate intermediate product was inhibited, with strengthened CO2 fixation involving the direct conversion of 2-oxoglutarate to isocitrate. The collective results demonstrate that stubble return and subsoiling optimizes rhizosphere CFM communities by increasing microbial diversity, in turn increasing CO2 fixation by enhancing the utilization of rTCA and 3-hydroxypropionate/4-hydroxybutyrate cycles by CFMs. These events increase the microbial CO2 fixation in the cotton rhizosphere, thereby promoting the accumulation of microbial biomass, and ultimately improving rhizosphere soil organic carbon. This study clarifies the impact of conservation tillage measures on microbial CO2 fixation in cotton rhizosphere of coastal saline soil, and provides fundamental data for the improvement of carbon sequestration in saline soil in agricultural ecosystems.

6.
Front Immunol ; 15: 1341321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605950

RESUMO

Objective: To describe severe infection, foci of infection, microorganisms, associated factors, and impact on mortality in patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). Patients and methods: The study was based on a multicenter prospective cohort of patients with RA-ILD followed up from 2015 to 2023. The main outcome measures were incident severe infection and fatal infection. We evaluated infectious foci, etiologic agents, vaccination status, variables associated with lung function, and clinical-therapeutic variables in RA. The incidence rate (IR) for infection and mortality was calculated per 100 person-years, and 3 multivariate models were constructed to explore factors associated with infection. Results: We followed up 148 patients with RA-ILD for a median 56.7 months (699.3 person-years). During this period, 142 patients (96%) had at least 1 infection. A total of 368 infectious episodes were recorded, with an IR of 52.6 per 100 person-years. Of the 48 patients who died, 65% did so from infection. Respiratory infections were the most common first infection (74%), infection overall (74%), and fatal infection (80%) and were caused mostly by SARS CoV-2, Streptococcus pneumoniae, Pseudomonas aeruginosa, and influenza A virus. The factors associated with an increased risk of infection and death in patients with RA-ILD were age, inflammatory activity, and therapy with corticosteroids and immunosuppressants. Conclusion: Patients with RA-ILD have a high risk of serious infection, especially respiratory infection. Infection develops early, is recurrent, and is frequently fatal. The presence of associated factors such as advanced age, joint inflammation, and treatment highlight the importance of integrated and preventive medical care.


Assuntos
Artrite Reumatoide , Doenças Pulmonares Intersticiais , Humanos , Estudos Prospectivos , Artrite Reumatoide/complicações , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/tratamento farmacológico , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/complicações , Incidência
7.
Plants (Basel) ; 13(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611549

RESUMO

Sustainable farming is one of the priority goals of the "4 per 1000" concept with regard to the preservation of soil fertility and carbon sequestration. This paper presents a study on the use of a mixture of cover crops of self-grown oats (Avena sativa L.) and sown white mustard (Sinapis alba L.) in organic farming under the agroecological conditions of Serbia. The main objective was to identify sensitive carbon pools (microbial carbon and nitrogen, basal respiration and a number of specific groups of soil microorganisms) in organic farming with and without cover crops. The inclusion of a mixture of white mustard and self-grown oats as a cover crop led to a significantly increased biogenity of the soil compared to a control after only a few years of investigation. The number of microorganisms, soil respiration and microbial biomass carbon were significantly higher in the cover crop treatment compared to the control soil on an organic farm in Serbia. This is the first study in Serbia to investigate the effect of self-grown oats as a cover crop. Further research will incorporate a wider range of variables and factors in order to develop a sustainable and effective site-specific system for organic crop production in Serbia.

8.
Front Immunol ; 15: 1371611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571940

RESUMO

The gasdermin protein family and its homologs in microorganisms have gained significant attention due to their roles in programmed cell death, immune defense, and microbial infection. This review summarizes the current research status of gasdermin proteins, their structural features, and functional roles in fungi, bacteria, and viruses. The review presents evolutionary parallels between mammalian and microbial defense systems, highlighting the conserved role of gasdermin proteins in regulating cell death processes and immunity. Additionally, the structural and functional characteristics of gasdermin homologs in microorganisms are summarized, shedding light on their potential as targets for therapeutic interventions. Future research directions in this field are also discussed to provide a roadmap for further investigation.


Assuntos
Gasderminas , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mamíferos/metabolismo , Proteínas de Ligação a Fosfato
9.
Pest Manag Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578633

RESUMO

BACKGROUND: Fusarium infection has caused huge economic losses in many crops. The study aimed to compare the microbial community of suppressive and conducive soils and relate to the reduction of Fusarium wilt. RESULTS: High-throughput sequencing and microbial network analysis were used to investigate the differences in the rhizosphere microbiota of the suppressive and conducive soils and to identify the beneficial keystone taxa. Plant pathogens were enriched in the conducive soil. Potential plant-beneficial microorganisms and antagonistic microorganisms were enriched in the suppressive soil. More positive interactions and keystone taxa existed in the suppressive soil network. Thirty-nine and 16 keystone taxa were identified in the suppressive and conducive soil networks, respectively. Sixteen fungal strains and 168 bacterial strains were isolated from suppressive soil, some of which exhibited plant growth-promotion traits. Thirty-nine bacterial strains and 10 fungal strains showed antagonistic activity against F. solani. Keystone taxa Bacillus and Trichoderma exhibited high antifungal activity. Lipopeptides produced by Bacillus sp. RB150 and chitinase from Trichoderma spp. inhibited the growth of F. solani. Microbial consortium I (Bacillus sp. RB150, Pseudomonas sp. RB70 and Trichoderma asperellum RF10) and II (Bacillus sp. RB196, Bacillus sp. RB150 and T. asperellum RF10) effectively controlled root rot disease, the spore number of F. solani was reduced by 94.2% and 83.3%. CONCLUSION: Rhizospheric microbiota of suppressive soil protects plants against F. solani infection. Antagonistic microorganisms in suppressive soil inhibit pathogen growth and infection. Microbial consortia consisted of keystone taxa well control root rot disease. These findings help control Fusarium wilt. © 2024 Society of Chemical Industry.

10.
Anim Biosci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575122

RESUMO

Objective: This study aimed to investigate the effects of dietary supplementation with Agaricus blazei polysaccharide (ABP) at varying concentrations on the performance, egg quality, blood biochemistry, intestinal morphology, and microflora of quail. Methods: The study involved a total of 2,700 Korean quails, which were randomly divided into three groups. The measured variables encompassed productive performance, egg parameters, carcass parameters, serum metabolites, immune response parameters, antioxidative properties, and gut microbiome. Results: The addition of ABP did not have a significant effect on average daily feed intake. However, it was found to increase the average daily egg weight and egg production rate, reduce the feed-egg ratio. There were no significant impacts on egg quality measures such as egg shape index, egg yolk index and color, egg yolk and protein content. However, ABP supplementation significantly increased the Hough Unit (HU) (p<0.01) and decreased the rate of unqualified eggs(p<0.01). Regarding serum parameters, the inclusion led to an increase in total protein concentration(p<0.05) and a reduction in low-density lipoprotein cholesterol (LDL-C) (p<0.05). There were no significant effects observed on immune indicators such as immune globulin A (IgA) and immune globulin M (IgM). ABP supplementation increased the levels of serum antioxidant indicators, including glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD) (p<0.05), and total antioxidant capacity colorimeter (T-AOC) (p<0.05). Furthermore, ABP supplementation significantly elevated the intramuscular fatty acid content in quail meat. Additionally, ABP supplementation demonstrated a significant improvement in the diversity of gut microbiota and induced alterations in the composition of the gut microbiota. Conclusion: The findings of this study indicate that dietary supplementation of ABP enhanced production performance and antioxidant capacity while increasing the levels of polyunsaturated fatty acids (PUFA) in quail muscle.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38577723

RESUMO

This review is aimed at summarizing the current state of knowledge about the relationship between environmental exposure to the bioaerosol emitted by intensive livestock farming and changes in the microbiome of people living in livestock farm vicinity. The PubMed, Scopus and Web of Science databases were searched by crossing keywords from the following 3 groups: a) "livestock," "animal farms," "animal breeding"; b) "microbiome," "resistome"; c) "livestock vicinity," "farm vicinity," "neighborhoods and health" in 2010-2022. Literature screening did not reveal any paper related to the full microbiome composition in the population studied. In the study, the authors included 7 papers (5 from the Netherlands, 1 from the USA, and 1 from China). The studies confirmed the carriage of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), livestockassociated MRSA (LA-MRSA MC398) and multidrug-resistant S. aureus (MDRSA) in the nasal microbiome of adults and children living within 500-2000 m from a livestock farm. Clostridium difficile, including LA-ribotype RT078 carriage, was detected in the intestinal microbiome of adults living within 500-1000 m. Extended-spectrum ß-lactamase (ESBL) producing Enterobacteriaceae were confirmed in the intestinal microbiome of adults living within 500-6200 m. Knowledge on the composition of the microflora of people living in livestock farm vicinity is insufficient to conclude about changes in the microbiome caused by the environmental emission of bioaerosol. The carriage prevalence of the LA-bacteria, including both strains with antimicrobial resistance and antimicrobial resistance genes, confirms the presence of zoonotic bacteria in the human microflora in populations without occupational contact with animals. It cannot be ruled out that zoonotic bacteria, as a component of the microbiome, have a negative impact on people's health. Int J Occup Med Environ Health. 2024;37(2).

12.
Appl Environ Microbiol ; : e0041424, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563750

RESUMO

Lactococcus lactis, a lactic acid bacterium used in food fermentations and commonly found in the human gut, is known to possess a fermentative metabolism. L. lactis, however, has been demonstrated to transfer metabolically generated electrons to external electron acceptors, a process termed extracellular electron transfer (EET). Here, we investigated an L. lactis mutant with an unusually high capacity for EET that was obtained in an adaptive laboratory evolution (ALE) experiment. First, we investigated how global gene expression had changed, and found that amino acid metabolism and nucleotide metabolism had been affected significantly. One of the most significantly upregulated genes encoded the NADH dehydrogenase NoxB. We found that this upregulation was due to a mutation in the promoter region of NoxB, which abolished carbon catabolite repression. A unique role of NoxB in EET could be attributed and it was directly verified, for the first time, that NoxB could support respiration in L. lactis. NoxB, was shown to be a novel type-II NADH dehydrogenase that is widely distributed among gut microorganisms. This work expands our understanding of EET in Gram-positive electroactive microorganisms and the special significance of a novel type-II NADH dehydrogenase in EET.IMPORTANCEElectroactive microorganisms with extracellular electron transfer (EET) ability play important roles in biotechnology and ecosystems. To date, there have been many investigations aiming at elucidating the mechanisms behind EET, and determining the relevance of EET for microorganisms in different niches. However, how EET can be enhanced and harnessed for biotechnological applications has been less explored. Here, we compare the transcriptomes of an EET-enhanced L. lactis mutant with its parent and elucidate the underlying reason for its superior performance. We find that one of the most significantly upregulated genes is the gene encoding the NADH dehydrogenase NoxB, and that upregulation is due to a mutation in the catabolite-responsive element that abolishes carbon catabolite repression. We demonstrate that NoxB has a special role in EET, and furthermore show that it supports respiration to oxygen, which has never been done previously. In addition, a search reveals that this novel NoxB-type NADH dehydrogenase is widely distributed among gut microorganisms.

13.
Cureus ; 16(2): e55156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558678

RESUMO

Hathewaya limosa, an anaerobic bacterium, has been associated with various infections, including prosthetic valve endocarditis, although its role in empyema remains uncommon. This abstract presents a case report of a patient diagnosed with H. limosa empyema, highlighting the clinical presentation, diagnostic challenges, and successful treatment strategies. The case underscores the importance of considering unusual pathogens in the context of empyema. We discuss the clinical management, microbiological identification, and outcomes of this rare infection to contribute valuable insights for healthcare practitioners encountering similar cases.

14.
Front Microbiol ; 15: 1294833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559354

RESUMO

Pinus taeda is an important forest tree species for plantations because of its rapid growth and high yield of oleoresins. Although P. taeda plantations distribute in warm and wet southern China, drought, sometime serious and long time, often occurs in the region. To explore drought tolerance of P. taeda and usage of beneficial microorganisms, P. taeda seedlings were planted in pots and were inoculated with root endophytic fungus Serendipita indica and finally were treated with drought stress for 53 d. Metabolome and proteome of their needles were analyzed. The results showed that S. indica inoculation of P. taeda seedlings under drought stress caused great changes in levels of some metabolites in their needles, especially some flavonoids and organic acids. Among them, the levels of eriocitrin, trans-aconitic acid, vitamin C, uric acid, alpha-ketoglutaric acid, vitamin A, stachydrine, coumalic acid, itaconic acid, calceolarioside B, 2-oxoglutaric acid, and citric acid were upregulated more than three times in inoculated seedlings under drought stress, compared to those of non-inoculated seedlings under drought stress. KEGG analysis showed that some pathways were enriched in inoculated seedlings under drought stress, such as flavonoid biosynthesis, ascorbate and aldarate metabolism, C5-branched dibasic acid metabolism. Proteome analysis revealed some specific differential proteins. Two proteins, namely, H9X056 and H9VDW5, only appeared in the needles of inoculated seedlings under drought stress. The protein H9VNE7 was upregulated more than 11.0 times as that of non-inoculated seedlings under drought stress. In addition, S. indica inoculation increased enrichment of water deficient-inducible proteins (such as LP3-1, LP3-2, LP3-3, and dehydrins) and those involved in ribosomal structures (such as A0A385JF23). Meanwhile, under drought stress, the inoculation caused great changes in biosynthesis and metabolism pathways, mainly including phenylpropanoid biosynthesis, cutin, suberine and wax biosynthesis, and 2-oxocarboxylic acid metabolism. In addition, there were positive relationships between accumulation of some metabolites and enrichment of proteins in P. taeda under drought stress. Altogether, our results showed great changes in metabolome and proteome in inoculated seedlings under drought stress and provided a guideline to further study functions of metabolites and proteins, especially those related to drought stress.

15.
Environ Sci Technol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568611

RESUMO

The emergence of coronavirus disease 2019 (COVID-19) has catalyzed great interest in the spread of airborne pathogens. Airborne infectious diseases are classified into viral, bacterial, and fungal infections. Environmental factors can elevate their transmission and lethality. Air pollution has been reported as the leading environmental cause of disease and premature death worldwide. Notably, ambient particulates of various components and sizes are harmful pollutants. There are two prominent health effects of particles in the atmosphere: (1) particulate matter (PM) penetrates the respiratory tract and adversely affects health, such as heart and respiratory diseases; and (2) bioaerosols of particles act as a medium for the spread of pathogens in the air. Particulates contribute to the occurrence of infectious diseases by increasing vulnerability to infection through inhalation and spreading disease through interactions with airborne pathogens. Here, we focus on the synergistic effects of airborne particulates on infectious disease. We outline the concepts and characteristics of bioaerosols, from their generation to transformation and circulation on Earth. Considering that microorganisms coexist with other particulates as bioaerosols, we investigate studies examining respiratory infections associated with airborne PM. Furthermore, we discuss four factors (meteorological, biological, physical, and chemical) that may impact the influence of PM on the survival of contagious pathogens in the atmosphere. Our review highlights the significant role of particulates in supporting the transmission of infectious aerosols and emphasizes the need for further research in this area.

16.
Front Microbiol ; 15: 1383813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601943

RESUMO

Phosphorus (P) is an important nutrient for plants, and a lack of available P greatly limits plant growth and development. Phosphate-solubilizing microorganisms (PSMs) significantly enhance the ability of plants to absorb and utilize P, which is important for improving plant nutrient turnover and yield. This article summarizes and analyzes how PSMs promote the absorption and utilization of P nutrients by plants from four perspectives: the types and functions of PSMs, phosphate-solubilizing mechanisms, main functional genes, and the impact of complex inoculation of PSMs on plant P acquisition. This article reviews the physiological and molecular mechanisms of phosphorus solubilization and growth promotion by PSMs, with a focus on analyzing the impact of PSMs on soil microbial communities and its interaction with root exudates. In order to better understand the ability of PSMs and their role in soil P transformation and to provide prospects for research on PSMs promoting plant P absorption. PSMs mainly activate insoluble P through the secretion of organic acids, phosphatase production, and mycorrhizal symbiosis, mycorrhizal symbiosis indirectly activates P via carbon exchange. PSMs can secrete organic acids and produce phosphatase, which plays a crucial role in soil P cycling, and related genes are involved in regulating the P-solubilization ability. This article reviews the mechanisms by which microorganisms promote plant uptake of soil P, which is of great significance for a deeper understanding of PSM-mediated soil P cycling, plant P uptake and utilization, and for improving the efficiency of P utilization in agriculture.

17.
J Wound Care ; 33(Sup4a): xcix-cx, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38588056

RESUMO

Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.


Assuntos
Nanopartículas , Infecções Estafilocócicas , Infecção dos Ferimentos , Humanos , Biofilmes , Staphylococcus aureus , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Pseudomonas aeruginosa , Nanopartículas/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
18.
PeerJ ; 12: e17165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590706

RESUMO

Background: Plastic waste is a global environmental issue that impacts the well-being of humans, animals, plants, and microorganisms. Microplastic contamination has been previously reported at Kung Wiman Beach, located in Chanthaburi province along with the Eastern Gulf of Thailand. Our research aimed to study the microbial population of the sand and plastisphere and isolate microorganisms with potential plastic degradation activity. Methods: Plastic and sand samples were collected from Kung Wiman Beach for microbial isolation on agar plates. The plastic samples were identified by Fourier-transform infrared spectroscopy. Plastic degradation properties were evaluated by observing the halo zone on mineral salts medium (MSM) supplemented with emulsified plastics, including polystyrene (PS), polylactic acid (PLA), polyvinyl chloride (PVC), and bis (2-hydroxyethyl) terephthalate (BHET). Bacteria and fungi were identified by analyzing nucleotide sequence analysis of the 16S rRNA and internal transcribed spacer (ITS) regions, respectively. 16S and ITS microbiomes analysis was conducted on the total DNA extracted from each sample to assess the microbial communities. Results: Of 16 plastic samples, five were identified as polypropylene (PP), four as polystyrene (PS), four as polyethylene terephthalate (PET), two as high-density polyethylene (HDPE), and one sample remained unidentified. Only 27 bacterial and 38 fungal isolates were found to have the ability to degrade PLA or BHET on MSM agar. However, none showed degradation capabilities for PS or PVC on MSM agar. Notably, Planococcus sp. PP5 showed the highest hydrolysis capacity of 1.64 ± 0.12. The 16S rRNA analysis revealed 13 bacterial genera, with seven showing plastic degradation abilities: Salipiger, Planococcus, Psychrobacter, Shewanella, Jonesia, Bacillus, and Kocuria. This study reports, for the first time of the BHET-degrading properties of the genera Planococcus and Jonesia. Additionally, The ITS analysis identified nine fungal genera, five of which demonstrated plastic degradation abilities: Aspergillus, Penicillium, Peacilomyces, Absidia, and Cochliobolus. Microbial community composition analysis and linear discriminant analysis effect size revealed certain dominant microbial groups in the plastic and sand samples that were absent under culture-dependent conditions. Furthermore, 16S and ITS amplicon microbiome analysis revealed microbial groups were significantly different in the plastic and sand samples collected. Conclusions: We reported on the microbial communities found on the plastisphere at Kung Wiman Beach and isolated and identified microbes with the capacity to degrade PLA and BHET.


Assuntos
Actinomycetales , Microbiota , Actinomycetales/genética , Ágar/metabolismo , Bactérias/genética , Microbiota/genética , Plásticos/metabolismo , Poliésteres/metabolismo , Poliestirenos/metabolismo , RNA Ribossômico 16S/genética , Areia
19.
Environ Geochem Health ; 46(5): 167, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592380

RESUMO

Microorganisms are crucial elements of terrestrial ecosystems, which play significant roles in improving soil physicochemical properties, providing plant growth nutrients, degrading toxic and harmful chemicals, and biogeochemical cycling. Variations in the types and quantities of root exudates among different plants greatly alter soil physicochemical properties and result in variations in the diversity, structure, and function of soil microorganisms. Not much is understood about the differences of soil fungi and archaea communities for different plant communities in coastal wetlands, and their response mechanisms to environmental changes. In this study, fungal and archaea communities in soils of Suaeda salsa, Phragmites australis, and Spartina alterniflora in the intertidal habitat of coastal wetlands were selected for research. Soil fungi and archaea were analyzed for diversity, community structure, and function using high throughput ITS and 16S rRNA gene sequencing. The study revealed significant differences in fungi and archaea's diversity and community structure in the rhizosphere soil of three plant communities. At the same time, there is no significant difference in the functional groups. SOM, TP, AP, MC, EC and SOM, TN, TP, AP, MC, EC are the primary environmental determinants affecting changes in soil fungal and archaeal communities, respectively. Variations in the diversity, community structure, and ecological functions of fungi and archaea can be used as indicators characterizing the impact of external disturbances on the soil environment, providing a theoretical foundation for the effective utilization of soil microbial resources, thereby achieving the goal of environmental protection and health promotion.


Assuntos
Ecossistema , Áreas Alagadas , Plantas Tolerantes a Sal , RNA Ribossômico 16S , Archaea/genética , Poaceae , Solo , Fungos/genética
20.
Int J Phytoremediation ; : 1-11, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597454

RESUMO

In the present study, experiments were conducted to assess the influence of nanoscale sulfur in the microbial community structure of metallophytes in Hg-contaminated rhizosphere soil for planting rapeseed. The results showed that the richness and diversity of the rhizobacteria community decreased significantly under Hg stress, but increased slightly after SNPs addition, with a reduction in the loss of Hg-sensitive microorganisms. Moreover, all changes in the relative abundances of the top ten phyla influenced by Hg treatment were reverted when subjected to Hg + SNPs treatment, except for Myxococcota and Bacteroidota. Similarly, the top five genera, whose relative abundance decreased the most under Hg alone compared to CK, increased by 19.05%-54.66% under Hg + SNPs treatment compared with Hg alone. Furthermore, the relative abundance of Sphingomonas, as one of the dominant genera for both CK and Hg + SNPs treatment, was actively correlated with plant growth. Rhizobacteria, like Pedobacter and Massilia, were significantly decreased under Hg + SNPs and were positively linked to Hg accumulation in plants. This study suggested that SNPs could create a healthier soil microecological environment by reversing the effect of Hg on the relative abundance of microorganisms, thereby assisting microorganisms to remediate heavy metal-contaminated soil and reduce the stress of heavy metals on plants.


In this manuscript, we first comprehensively investigated the changes in the rhizosphere microbial community structure of metallophytes in Hg-contaminated soil with SNPs addition, as well as the relationship between soil microbiology and plant resistance to Hg stress. Our results demonstrated that SNPs exhibit a significant advantage in improving rhizosphere microecology by increasing the abundance of beneficial rhizobacteria, thereby alleviating heavy metal toxicity, and promoting plant growth. This study is the first study describing the response of soil microorganisms coexposed to heavy metals and SNPs, providing valuable information for the potential use of SNPs to assist phytoremediation of toxic metal pollution and its impact on soil microbial communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...